Name: Student Number:

Exam on WBPH030 "Solid State Physics"

Content: 5 pages (including this cover page)

Monday January 24 2022 (16:00-18:00)

Exam drafted by (name first examiner): Jianting Ye

Exam reviewed by (name second examiner): Graeme Blake

For administrative purposes; do NOT fill the table

	Maximum points	Points scored
Question 1	26	
Question 2	24	
Question 3	26	
Question 4	24	
Total	100	

Final mark: _____

Question 1: Crystal structure and X-ray scattering

Note that a rough hand sketch is sufficient, don't spend your time making good-looking drawings!

(10p) Apply the idea of repeating environment to the following 2D patterns, identify the underlying Bravais lattice. Find the relationship between the translation vector \mathbf{a} , \mathbf{b} , and the between them (say $|\mathbf{a}| = |\mathbf{b}|$, and).

(3p) The so-called Kagome lattice shown below can be viewed as a 2D Bravais lattice. Identify the primitive cell of the Kagome lattice if each crossing point of two bamboo ribbons can be regarded as a lattice site. Count the number of lattice sites in a

primitive cell.

(5p)

- a) Show that a reciprocal lattice vector $G = hb_1 + kb_2 + lb_3$ is orthogonal to the lattice plane (*hkl*).
- b) Show that the distance d_{hkl} of two lattice planes with Miller indices (*hkl*) is given by $d_{hkl} = 2\pi N / |h\boldsymbol{b}_1 + k\boldsymbol{b}_2 + l\boldsymbol{b}_3|$.

(8p) By analyzing the structure factor of NaCl, show the lattice planes *h*,*k*,*l*, from which diffraction peaks are expected. (*hint*: NaCl has two kinds of atoms in a cubic system, which can be considered as 4 Na at 000 FCC structure + 4 Cl at $\frac{1}{2}$ $\frac{1}{2}$ FCC structure).

Question 2: Phonons and thermal properties.

As shown below, consider a linear chain of N atoms all with mass M, and the force constant is C.

- 1) (8p) Calculate and sketch the dispersion relation in the first Brillouin zone for the chain above.
- 2) (4p) Sketch the dispersion relationship in the first Brillouin zone if either the force constant or the mass of atoms changes. The mono-atomic chain becomes a di-atomic chain. How will the $\omega(k)$ relationship evolve?
- 3) (6p) Suppose a green laser light (532 nm) illuminate the chain. Based on the sketch in the 2), estimate which vibrational mode(s) can be excited?
- 4) (6p) Suppose the optical branch has the form of near K = 0, where is a constant. In three-dimension case, show that for , and , for all .

Question 3: Free electrons in potassium and calcium.

Consider two crystals: K (1 valence e) and Ca (2 valence e). Both are 3D simple cubic. Suppose we can slice the single crystals and isolate atomic planes, both K and Ca can form 2D square lattices of constant a and b, respectively

- 1) (6p) Calculate the 3D density of state $(D_{3D}(E))$ and 2D density of states $(D_{2D}(E))$, We assume the size of the specimen is L^3 and electron mass is m_e . $(L = N_x a \text{ or } N_x b$ for K and Ca, respectively).
- 2) (12p)
 - a) Argue why both of them are metals (use the concept of Brillouin zone and Fermi surface).
 - b) Calculate and sketch the size and shape of the Fermi surface for the 2D K and Ca (assume no modification due to the periodic potential of K^+ and Ca^+).
- 3) (8p) Suppose the scattering time τ is identical for K and Ca. From Drude's model briefly compare the difference between 2D K and Ca in electrical conductivity and thermal conductivity $K = \frac{1}{3} c_{el} v^2 \tau$, and their ratio $K/\sigma T$ (which is called the Wiedemann-Franz law).

$$C_{ei} = \frac{{}^{2}nk_{B}^{2}}{2E_{F}}T = JK^{-1}m^{-3} = \int_{a}^{b} \frac{ne^{2}}{m_{e}}E^{b}$$

v is the velocity of electron, n = N/V, $mv_F^2 \approx 2E_F$, where v_F is the Fermi velocity.

Question 4: Semiconductor and superconductivity

Silicon (Si) is arguably the most important material of the last century, which is frequently referred as the Silicon age.

E(k) relationship of Silicon

Wigner-Seitz cell in the K space

- 1) (4p) Silicon has fully-filled valence bands and a band gap > 1eV. Briefly explain how can the intrinsic carriers, electron n and hole p, be created in Si at a finite temperature.
- 2) (4p) From the periodic table shown above, choose the elements for *p* and *n*-type doping in Si, draw the schematic diagrams at the band edge (for *p* and *n*-type). And identify the locations of the impurity bands in the Wigner-Seitz cell for *p* and *n*-type dopings.
- 3) (3p) What will happen on the interface if you now bring *p* and *n*-type Si in contact?
- 4) (4p) Sketch and explain the rectification behavior of a *pn* junction.
- 5) (5p) Draw the energy levels at the interface before and after diffusive equilibrium is established. Based on the energy diagram explain how a solar cell works.
- 6) (4p) With very strong p doping, when dopant replaced 9% of Si, superconductivity was discovered at 0.35 K. What are the two hallmark physical properties to be expected for T < 0.35 K?

----- End of Question -----